

(1) SILESIAN UNIVERSITY OF TECHNOLOGY FACULTY OF POWER AND ENVIRONMENTAL ENGINEERING

⁽²⁾ UNIVERSITY OF BIELSKO-BIALA FACULTY OF MATERIALS AND ENVIRONMENT SCIENCES **INSTITUTE OF ENGINEERING AND ENVIRONMENTAL PROTECTION**

Bochdziewicz Jolanta⁽¹⁾, Mariusz Kuglarz⁽²⁾, Klaudiusz Grűbel⁽²⁾

The aim of this study was to develop the technological concept ensuring: (1) high efficiency co-digestion of by-products from the production of biodiesel and sewage sludge as well as (2) an effective method of post-digestion effluents treatment, - to the level allowing its discharge to the natural reservoir.

The digesters were fed with the following co-digestion mixtures:

- 3% waste glycerine (WG) + 97% sewage sludge (SS);
- 2% rapeseed cakes (RC) + 98% sewage sludge (SS);

MATERIALS AND METHODS

Struvite precipitation

Detailed description of conditions of struvite precipitation:

- 10 dm³ crystallizer, working in a batch mode. The process was
- H=1.0n

2% rapeseed cakes (RC) + 1% waste glycerine (WG) + 97% sewage sludge (SS).

Characteristics of the raw materials						
Indicator	Sewage sludge (SS)	Waste glycerine (WG)	Rapessed cake (RC)			
pН	6.4 (0.4)	5.6 (0.3)	-			
TS, %	5,17 (0.35)	55.9 (2.1)	95.6 (2.8)			
VS,%	3.51 (0.27)	52.1 (1.7)	82.5 (2.4)			
C _{org.} ,%TS	33.0 (0.4)	48.4 (0.7)	51.6 (2.6)			
N _{Total} , % TS	5.02 (0.38)	0.17 (0.01)	5.54 (0.42)			
NH₄⁺, mg/dm³	15.8 (5.9)	254 (25)	-			
COD, gO ₂ /dm ³	0.25 (0.10)	420 (66)	-			

Anaerobic digestion

Detailed description of anaerobic digestion conditions:

- 3 dm³ bioreactors, working in a semi-continuous mode
- Process conducted in mesophilic conditions (37°C)
- HRT in the range of 16-26 days

- carried out at constant temperature of 20°C and pH of 9.0-9.5; MgO used as Mg^{2+} source and H_3PO_4 used as PO_4^{3-} source;
- process was conducted for molar ratio of Mg^{2+} : NH_4^+ : PO_4^{3-} as well as 25% and 50% excess amounts of magnesium and phosphorus influent $(Mg^{2+}: NH_4^+: PO_4^{3-} = 1.25:1:1.25; Mg^{2+}: NH_4^+: PO_4^{3-} = 1.5:1:1.5)$

Membrane filtration

Detailed description of the membrane apparatus used and process conditions during experiments:

- high-pressure in the device type GH-100-400, produced by a US-based company Osmonics;
- dead-end mode; trans-membrane pressure of 2 MPa;
- pH value of the liquors treated was adjusted to 6.5 by means of HCl, before the liquor underwent membrane treatment;
- RO: polyamide membrane type ADF.

RESULTS AND DISCUSSION

I. Anaerobic co-digestion of waste glycerine/rapeseed cakes and sewage sludge Characteristics of the post-digestion liquors – the most appropriate process conditions (tab. 1).

	Co-digestion				
O-ma a-amia	GL + SS	RC +SS	GL+RC+SS		
Oznaczenie	HRT [doby]				
	22	22	24		
рН	7.4 (0.2)	7.4 (0.2)	7.8 (0.1)		
ORP, mV	-446 (30)	-420 (25)	-332 (20)		
COD, mg O_2/dm^3	1945 (452)	2745 (165)	3535 (305)		
VFA, mg/dm ³	1155 (55)	1055 (55)	1735 (75)		
PO_4^3 , mg/dm ³	345 (37)	485 (48)	825 (40)		
NH_4^+ , mg/dm ³	1660 (31)	2050 (150)	2810 (140)		
Alkalinity, mg/dm ³	6554 (225)	7229 (252)	7690 (208)		
CSK, s	90 (8)	120 (8)	410 (30)		

3,5

Biogas production and yield:

0,6

1.5:1:1.5 1.25:1:1.25 1:1:1 Molar ratio of Mg²⁺: NH₄⁺: PO₄³⁻

b.: Membrane filtration (RO) without pre-treatment. Concentrations and average removal degrees

Parameter	GL + SS	RC +SS	GL+RC+SS	Permissible value*
рН	7.2	7.2	7.4	6.5-9.0
$\mathrm{NH_4}^+,\mathrm{mg/dm^3}$	198 (88%)	287 (86%)	656 (77%)	10 ^a -20 ^b
TN, mgN/dm ³	232 (86%)	349 (83%)	674 (76%)	
TP, mgP/dm ³	1.02 (>99%)	1.12 (>99%)	1.88 (>99%)	1 ^a -2 ^b
COD, mgO ₂ /dm ³	25 (98.7%)	35 (98.7%)	65 (98%)	125

(10 000-100 000a- above 100 000b inhabitants and above), 21 May 1991

c.: Struvite precipitation (pre-treatment) + membrane filtration (RO) as a post-treatment (average values)

Liquors Pretreatment	GL + SS	RC +SS	GL+ RC+SS	Permissible value*
Struvite precipitation Mg ²⁺ : NH ₄ ⁺ : PO ₄ ³⁻	1.25:1:1.25	1.5: 1: 1.5	1.25:1:1.25	-
рН	7.5	7.4	7.4	6.5-9.0
NH_4^+ , mg/dm ³	6.4	7.0	8.0	
TN., mgN/dm ³	7.0	7.8	9.1	
TP, mgP/dm ³	0.3	0.3	0.4	1 ^a -2 ^b
COD, mgO ₂ /dm ³	9.5	12	14	125
U Council I	Directive (9	91/271/EWG)	concerning u	rban wastewa

CONLUSIONS

The addition of glycerol fraction /rapeseed cakes to sewage sludge influenced positively the degree of organic matter biodegradation and the quantity and quality of biogas produced. The co-digestion mixtures performed in optimal conditions (HRT = 22-24 days) generated the double amounts of biogas - containing about 10-12% more CH_4 , - compared to the samples including the only sewage sludge. Under these conditions, biogas yield increased by about 48-82%, - depending on the co-substrate used. Taking into account the high content of organic matter (COD) and nutrients (NH₄⁺, PO_4^{3-}) in post-digestion effluents, an attempt was made to treat them by the application of chemical precipitation and membrane filtration. The treatment of post-digestion liquors with a struvite

